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Hybrid electrodes of hierarchical porous carbon (HPC) and manganese oxide (MnO2� were syn-
thesized using a fast surface redox reaction of potassium permanganate under facile immersion
methods. The HPC/MnO2 hybrids had a number of micropores and macropores and the MnO2

nanoparticles acted as a pseudocapacitive material. The synergistic effects of electric double-layer
capacitor (EDLC)-induced capacitance and pseudocapacitance brought about a better electrochem-
ical performance of the HPC/MnO2 hybrid electrodes compared to that obtained with a single com-
ponent. The hybrids showed a specific capacitance of 228 F g−1 and good cycle stability over
1000 cycles.
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1. INTRODUCTION
Supercapacitors have attracted increasing attention because
they have higher power density and longer cycle ability
than rechargeable batteries.1 Supercapacitors can be clas-
sified according to their energy-storage mechanism into
two categories: electric double-layer capacitors (EDLCs)
and pseudocapacitors. EDLCs come from the pure elec-
trostatic charge accumulated at the electrode/electrolyte
interface. Therefore, EDLCs exhibit good cycle stabil-
ity and high power density. However, EDLCs require an
electrode with a high specific surface area and pores of
size of the ions.2 Other category is pseudocapacitors, in
which fast and reversible faradic processes take place due
to an electro-active species. Transition-metal oxides such
as ruthenium oxide (RuO2) or manganese oxide (MnO2)
and electrically conductive polymers have been used as
pseudocapacitive electrode materials.3 In particular, MnO2

has drawn much attention as a pseudocapacitive electrode
material for supercapacitors owing to its low cost, natu-
ral abundance, environmental compatibility, and high the-
oretical specific capacitance (∼ 1100 F g−1).4 However,
the poor cycle stability and low electrical conductivity of
MnO2 have limited its practical application as a pseudoca-
pacitive material.5

Recently, carbon-based materials with pseudocapaci-
tive effects have been reported.6–8 Carbon-based materials
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containing electro-active heteroatoms have exhibited great
improvement of the specific capacitance owing to both
EDLC-induced capacitance and the pseudocapacitive
effect. These results suggest that hybrids based on carbon-
based materials with a high specific surface area and a
metal oxide can be a superior electrode material. In this
study, we made macroporous carbon-based material from
cellulose.9 The carbon pores are totally open and intercon-
nected, which is advantageous in terms of mass transfer
of the reactants.10�11 These porous structures can pro-
vide highly efficient electroytle-ion transport through the
macropores, micropores and mesopores. The hierarchi-
cal porous carbon (HPC), which has a high surface area
and a macroporous structure, was selected as a part
of the electrode, with pseudocapacitive MnO2 nanoparti-
cles homogeneously incorporated on the surface of HPC.
The HPC/MnO2 nanoparticle hybrid electrodes exhib-
ited a better electrochemical performance by synergistic
effects induced by its EDLC-based and its pseudocapaci-
tive performance.

2. EXPERIMENTAL DETAILS
2.1. Preparation of HPC/MnO2 Hybrids
HPC was prepared using a previously reported procedure,
in which a mixture of 7 wt% NaOH, 12 wt% urea, and
81 wt% water was prepared and pre-cooled to − 12 �C for
2 h. Then, 4 wt% cotton cellulose (Aldrich) was immersed
in the mixture solution, which was then vigorously stirred
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for approximately 5 min at room temperature. The mixture
solution was frozen at − 196 �C and then freeze-dried for
3 days. The resulting cryogel was carbonized by heating
from room temperature to 700 �C for 2 h at a heating
rate of 10 �C/min and an Ar flow rate of 200 mL/min.
The solution was then washed using distilled water and
ethanol and dried in a vacuum oven at 30 �C for 24 h. The
carbon material was ground and added into 200 mL of a
2 mM KMnO4 solution under continuous stirring at 70 �C
for 5 min. After the reaction was completed, the sample
was washed using distilled water and ethanol to eliminate
unreacted MnO−

4 and dried in an oven at 60 �C.

2.2. Characterization
The morphology of the hybrid samples was observed
using transmission electron microscopy (TEM, CM200,
Philips). X-ray diffraction (XRD, Rigaku DMAX-2500)
analysis of the samples was performed using Cu K�
radiation (wavelength � = 0�154 nm) operated at 40 kV
and 100 mA. X-ray photoelectron spectroscopy (XPS,
AXIS-HIS, Kratos Analytical, Japan) was performed using
monochromated Mg K� radiation (hv= 1500 eV). A two-
electrode cell configuration was used to measure the
performance of the samples as electrodes for superca-
pacitors. For the aqueous system, 5 wt% polytetrafluo-
roethylene (PTFE, Sigma-Aldrich, 60 wt% dispersion in
H2O) was added to the samples as binder. Typically, the
samples and PTFE were mixed to form a paste using a
mortar and pestle, rolled into sheets of uniform thick-
ness whit a thickness range from 40 to 50 �m (from
sheet to sheet), and punched into 1×1 cm diameter elec-
trodes. A typical pair of electrodes had a weight between

Figure 1. TEM images of (a) HPC and HPC/MnO2 hybrids with reac-
tion times of (b) 30 s, (c) 5 min, and (d) 10 min (the arrows are a state
in which the manganese oxide is aggregated).

Figure 2. Schematic diagram of HPC/MnO2 hybrids fabricated using
different reaction times.

2.5 and 3.0 mg after drying overnight at 100 �C. 0.5 M
Na2SO4 (Sigma-Aldrich, 99%) was used as aqueous elec-
trolyte. The electrodes and a porous polypropylene sep-
arator (Whatman GF/B) were sandwiched together in a

Figure 3. (a) Nitrogen adsorption and desorption isotherm curves and
(b) pore size distribution of the samples (black squares: HPC, open cir-
cles: HPC/MnO2 hybrids).
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Figure 4. (a) XRD patterns of MnO2 and HPC/MnO2 hybrids. (b) XPS
survey spectra and (c) the magnified view of the Mn 2p region of the
hybrids.

stainless steel cell to accomplish the fully assembled two-
electrode system. The electrochemical performances of the
samples were evaluated by cyclic voltammetry (CV) and
chronopotentiometry.

Figure 5. Cyclic voltammograms of HPC and HPC/MnO2 hybrids at a scan rate of 10 mV s−1. (b) Galvanostatic charge/discharge curve of the
HPC/MnO2 hybrids at a current density of 1 A g−1 in a potential window of 0 to 1.0 V. (c) Specific capacitances of HPC and HPC/MnO2 hybrid
electrodes as a function of scan rates. (d) Cyclic stability of the HPC/MnO2 hybrid electrodes at a scan rate of 50 mV s−1 over 1000 cycles.

3. RESULTS AND DISCUSSION
The TEM image of Figure 1(a) exhibits the three-
dimensional (3-D) macroporous structure of HPC. The
morphology of the HPC/MnO2 hybrids at different mag-
nifications is shown in Figures 1(b) and (c). It can
be seen that needle-like MnO2 is distributed on the
carbon surface and inner pores. Despite the fact that
KMnO4 is a strong oxidizing agent, the carbon mor-
phology was well preserved. Experimenting with different
reaction times and quantities of MnO2 [Figs. 1(b)–(d)],
optimal HPC/MnO2 hybrids were prepared. With a reac-
tion time of 5 min and 2 mM of KMnO4 at 70 �C,
MnO2 was homogeneously introduced onto the surface of
HPC [Fig. 1(c)]. Figure 2 shows a schematic image of
the HPC/MnO2 hybrids fabricated with different reaction
times. The pore characteristics of HPC and HPC/MnO2 are
shown in Figures 3(a), (b). Nitrogen adsorption and des-
orption isotherms of HPC and HPC/MnO2 showed IUPAC
type-I and IV hybrid shapes. The surface area of HPC
is 957.1 m2 g−1, which means that the surface areas of
micropores (613.1 m2 g−1) are twice as large as that of
mesopores (343.9 m2 g−1). In the case of HPC/MnO2, the
surface area was 651 m2 g−1, which means that the sur-
face areas of micropores (410.9 m2 g−1) and mesopores
(240.1 m2 g−1) make up. Although the surface area of
HPC/MnO2 was reduced by MnO2 on carbon, synergis-
tic effects of HPC and MnO2 were observed by main-
taining the pore structure, which incresed the capacitance
of the HPC/MnO2 hybrids in comparison to sole HPC.12

Figure 4(a) shows typical XRD patterns of the as-prepared
MnO2 and HPC/MnO2 hybrids. The presence of HPC and
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MnO2 in a mixed crystalline or amorphous structure was
confirmed from the XRD patterns.14 The two broad peaks
at around 12� and 37� can be indexed according to MnO2.
The carbon peak appeared at around 26�, with a second
broad, weak peak at around 44�, which is characteristic of
graphitic carbon. In this sample, the three peaks around
12�, 26�, and 37� were assigned to the crystal planes (110),
(002), and (211) of �-MnO2, respectively.13 The XRD
pattern of the HPC/MnO2 hybrids shows an amorphous
structure. The chemical configurations of the HPC/MnO2

hybrids were characterized by XPS. The peaks of Mn
(2p3/2, 2p1/2�, O 1s, and C 1s are shown in the survey
spectrum [Fig. 4(b)]. The Mn 2p3/2 peak is centered at
642.1 eV and the Mn 2p1/2 peak at 653.8 eV, which is in
good agreement with the reported data for Mn 2p3/2 and
2p1/2 in MnO2 [Fig. 4(c)].15 The XPS data coincide with
the XRD data.

The evaluation of the electrochemical performance of
the HPC/MnO2 hybrids was conducted in a 0.5 M Na2SO4

aqueous electrolyte. Figure 5(a) shows the CV curves of
the HPC and HPC/MnO2 hybrids over a potential range
from 0 to 1 V at a scan rate of 10 mV s−1. It is noticed
that the curves are somewhat rectangular, which indicates
almost ideal capacitance behavior. The specific capaci-
tances of the HPC and HPC/MnO2 hybrids were 161 and
228 F g−1, respectively. The hybrid electrodes showed a
capacitance that was approximately 41.6% higher than that
of HPC. The galvanostatic charge/discharge curves of the
HPC and HPC/MnO2 hybrids are shown in Figure 5(b).
It shows that the charging curves are symmetric with their
discharging counterparts. The specific capacitances of the
HPC and HPC/MnO2 hybrids were also caculated from
the galvanostatic charge–discharge curves at a discharg-
ing rate of 1 A g−1 and reached 110 and 180 F g−1,
respectively. The variation in the specific capacitance of
the HMC/MnO2 hybrids as a function of the scan rates is
plotted in Figure 5(c). The specific capacitance decreased
on increasing scan rates. However, the specific capacitance
of the HPC/MnO2 hybrids (103 F g−1� was maintained at
a relatively high scan rate of 200 mV s−1. Also, across
the entire range of scan rates, the HPC/MnO2 hybrids
showed higher capacitnaces than HPC. This is a result of
the synergistic effects of EDLC-based HPC and the pseu-
docapacitive effects of MnO2. Moreover, the HPC/MnO2

hybrids can increase the effective contact area between
MnO2 and the electrolyte, which results in high electro-
chemical utilization of MnO2. For the HPC/MnO2 hybrids,
cycling tests were carried out for 1000 cycles [Fig. 5(d)].
After 1000 cycles at a scan rate 50 mV s−1, the capac-
itances of the HPC/MnO2 hybrids decreased to 11% of
the initial capacitance, which was attributed to HPC on

covering the MnO2 by reducing the stress and proper pore
structure.

4. CONCLUSIONS
HPC/MnO2 hybrids were prepared by using cellulose-
based materials and a fast surface redox reaction of
potassium permanganate under facile immersion methods.
HPC/MnO2 hybrids were prepared with 2 mM KMnO4

and a reaction time of 5 min at 70 �C. The HPC/MnO2

hybrids showed a specific capacitance of 228 F g−1 at a
scan rate of 10 mV s−1, and a specific capacitance of 103
F g−1 was maintained at a relatively high scan rate of
200 mV s−1. Furthermore, a stable electrochemical perfor-
mance was maintained for 1000 cycles.
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